Ghost Party ~ WGD ‘Spooky (2016)’ Three-Week Competition

It’s been a while since I’ve properly sat down and made a game, apart from the Zero Hour Game Jam, which I entered with an entirely broken game about shooting ghosts with a flashlight. Today, after having three weeks to work on a game, I decided to start one the day it was due to be shown.

3dspooky5me

My Zero Hour Game Jam entry, the lesser of my two games about flashing ghosts.

I decided that my Zero Hour Game Jam entry had a few flaws, the main one being that you magically die after about 30 seconds every time without being visibly hit by anything. You hit ghosts by aiming straight at them; unfortunately, this means you have to aim the centre of the screen at them as the game uses a raycast, but there is no crosshair so it’s almost impossible to tell if you’re hitting the mark except that the ghosts turn red.

I did like the idea of hitting ghosts with a flashlight though, so I kept it and made a brand new game today with a different art style: crayons. You might think I’m crazy, but when you’re time-constrained, it always helps to think of quick hacks to make things easy. I could have just as easily used normal coloured pencil to draw everything, but a bad artist (or in this case, a rushed one, although I’m not exactly Picasso to start with) will always make coloured pencil look crap. On the contrary, when someone thinks of wax crayons, you think of a 5-year-old’s drawing tacked onto the fridge. Essentially, wax crayons have a very low skill ceiling and I exploited the heck out of that. It made for a very consistent style and I actually really like it! It’s similar to the style I used for Tappy Dev, but I think it’s possibly better.

screenshot_01

Yellow ghost is far too happy.

The general idea is that ghosts spawn from left and right, and it’s your job to shoot them down with your flashlight by clicking on them. It’s better than 3DSpooky5Me (my 0h game jam game), in that you can see the mouse cursor to indicate where you’re aiming. The ghosts are also much cuter.

Given more time, I’d go back and make sure the proportions of all the objects in the game were consistent. As you can see, the ground’s outline is very thick compared to that of the ghosts, despite being drawn using the same crayons. I’d also change the design of the gravestones and the large tombstones, since my friend said they look like printers. While the thought of a haunted Konica Minolta fills me with glee, I might save that idea for when I’m in a real jam.

I also need to change the mechanics a bit. Similar to the 0h Game Jam, I didn’t make the flashlight affect an area, but stuck with a raycast; having the flashlight hit all ghosts in its range when flashed would open up the possibility of combos and make the mechanic feel more satisfying when you line up 5 ghosts in the same flash. Currently, the score increments by a strange formula I devised based on the speed, sine-waviness and z-distance of the ghosts, but I feel this should be better communicated to the player, as it’s difficult to even notice how many points you got for hitting one. Furthermore, one thing the game lacks entirely is a lose condition, which I was minutes away from getting in the game, but was hindered at the last moment by having to go to the WGD event in which I showed the game.

But the biggest and funniest problem in this build is the unintentional and bewilderingly fast escalation in difficulty. Above was a screenshot from about 30 seconds in, but the following one is from a couple minutes in:

screenshot_02

Points for spotting the cameo appearance.

At the start, the difficulty increases in a linear fashion. Every 5 seconds (although I’d planned to change it to every 20 or 30 seconds and forgot), the time interval between ghost spawns goes down by a fixed amount. It does this 10 times, then it starts going down in a geometric progression. You can see where this is going. Every 5 seconds, the time between spawns is divided by 1.2. Then you end up with a ghost party. It’s a classic example of “oh I’m sure this arbitrarily-picked number will be fine”.

At the early stages of development (read: while zoning out in a lecture this morning, thinking about spooky ghosts), I considered adding some element of a rhythm game into this, but as you’ll find out there is no sound whatsoever. It’s somewhat inspired by the Sneaky Spirits game from Rhythm Paradise (or Rhythm Heaven, for you Americans). I wanted each ghost type to have their own behaviour, but this didn’t come to fruition and they instead all follow sine waves of varying frequency and magnitude.

I wanted the spiky green ones to zig-zag, the puffy white ones to flutter upwards and fall back down a bit constantly, and the blue ones were going to have Pacman-style grid movement. The pale ones were going to have an animated tail that wiggled around and the rare Drifloon (please don’t sue me, Nintendo) would’ve occasionally grabbed a headstone with its tassels and flown off with it. Maybe next build!

All things considered, the most important lesson I’ve learned today is that I should drawn with crayons more often. It’s really easy and looks pretty nice, especially with the Paper Mario-style aesthetic. It’s also not really apt to keep referencing ‘today’, but I’m not a clock so it’s fine. You can download the game here.

Advertisements

Honeycomb Engine: Dev Blog 2 ~ More Vulkan and Honeycode

Since last week, I had planned to shift my focus mainly onto Honeycode, but I’ve mostly been working on the renderer some more. Yesterday I did a bit of work on the Honeycode parser, but it’s nowhere near complete yet. However, I have thought a little more about how the language will work conceptually, such as the syntax it will use and the features it will support. The idea is to make a programming language for non-programmers or beginners to programming, so I want it to be super-intuitive. I’ll detail a few of my ideas below, although it’s currently just me throwing everything at the wall and seeing what sticks.

Vulkan

On the plus side, I’ve finished the set of Vulkan tutorials I was using now, resulting in a really cool rendering of a model of a chalet found on Sketchfab. Now that I have a better understanding of how Vulkan operates, the next step is to get multiple different models loaded. Once I achieve that, the next step is to think up a level data format that allows me to save and load level data from disk. And once I’ve done that, I’ll need to set up a proper component-based architecture for objects. By using the Component programming pattern, it’ll allow users of Honeycomb to write their own behaviour scripts and attach them freely to game objects while keeping those sets of behaviour nicely encapsulated and decoupled from each other.

vulkan_model

This hut is almost worth the couple of weeks spent trawling through tutorials.

I’ve been reading through Bob Nystrom’s brilliant book, Game Programming Patterns, which details many different ways of organising code for all sorts of situations; I’ll be using some of the patterns used in this book in spades. For example, I currently have an input class that’s using the Singleton pattern – you have a publicly accessible static member of a class – purely because it’s the quickest way of making something globally visible (well, that and making all of the member functions and variables of a class static). I wanted to quickly add functionality to rotate the model and move the viewport, so please don’t judge me.

As pretty much every source on programming patterns will tell you, Singleton is awful for almost every case, so I will replace the input system with one that uses the Command pattern, which replaces hard-coded function calls for a given input with a bunch of different encoded behaviours – called commands – assigned to variables for each input, which will be executed using some execute() function.

Honeycode

Since the idea behind Honeycode is to be beginner-friendly, I want to minimise the number of scary features in the language as possible. You know the sort of stuff I mean, like requiring the user to write a million lines of boilerplate code before anything actually happens. At the same time, I want it to be expressive and I need it to be easily translatable to equivalent C++ code so I can easily compile it into an executable together with the engine.

There are a few broad ideas I currently have – some may be useful, some may be scrapped later on:

  • When a user creates a new script, the code in that script is automatically inside a class that inherits Component (the base class for the Component programming pattern), but this information is hidden from the user. They just write functions and variables in the script and attach it to game objects in the editor and let the engine worry about types and stuff.
  • There are some event functions that automatically fire and are ignored by scripts that don’t bother to implement them. Those events include a start() function that gets called after everything gets set up, but it is the first user-created code that is called, an update() function called every frame, an exit() function called when the level switches and a quit() function called when the game is closed. All the user needs to know is that they exist and roughly when they are called.
  • There should be simple one-function APIs for doing simple tasks and there should be minimal #includes or imports (or, get rid of them entirely and do it behind the scenes), then those simple functions will get translated to the appropriate C++ code during compilation. For example, if a user wants to save data (as a string) to a file, they should be able to write something like:
write(myString, myFileName.dat);
  • I might only have one floating point data type and one integer data type. For new users, I think it might be too confusing to immediately have to distinguish between all sorts of number types, like float, int, long, signed int, unsigned short int, char, wchar_t and who the hell knows what else is lurking in C++. At that rate, I’m surprised they didn’t throw in short long int to make everyone blink twice. I think including only float and int should suffice. In some instances during compilation, I can replace a type with a more sensible one anyway – array indexing and iteration would always use unsigned integers, for example. I’ll also keep char hanging around, because at least it’s clear what char is doing to a new programmer.
  • Memory management should be as simple and automatic as possible because C++ is confusing enough as it is without having to worry about destructors and all that jazz. I should be able to do all that behind the scenes.

To make things clear, my language doesn’t exist to radically change the syntax of C++, nor is it intending to provide any fancy optimisations. It’s essentially just a metric ton of syntactic sugar to make C++ more palatable to newbies. Since I’m not aiming to squeeze the absolute most out of the hardware, I can be a bit more lax on the performance side of things as long as games are efficient enough. I have a few more ideas, but most of them are just things I’d remove from C++ rather than add.

As for the progress I’ve made regarding the lexer/parser, I’m currently at the stage where I can recognise some keywords from an input file and convert them into tokens, although it needs a lot more work before it’s finished. The next step after that is to add all those tokens into a parse tree, then I’ll need to look through that tree to make sure the syntax of the input file is valid. I’ve also settled on the file extension .hny for Honeycode files (I’ve clearly got my priorities straight when it comes to fulfilling features).

So far on my schedule, I’m supposed to have written my specification (which is complete), learned the tools I’m using (including Vulkan, although I’ve left myself an additional week for that) and started working on Honeycode (which is why I’ve been brainstorming ideas). This week, I’m supposed to have learned all the Vulkan I need to know and started on the end-of-term progress report; as I’ve finished the Vulkan tutorial ahead of time, I will wait until early December when my copy of the Vulkan Programming Guide is scheduled to get to me before I do much more Vulkan and probably work mainly on Honeycode instead.

Honeycomb Engine: Dev Blog 1 ~ Working with Vulkan

Vulkan is a modern graphics API developed by the Khronos Group, the same group that maintains OpenGL, designed to bring high-efficiency graphics and computation to current generations of graphics cards. As mentioned in my previous post, I’m planning to use Vulkan for Honeycomb’s renderer, and as such I’ve been spending the best part of the last week learning the ins and outs of how it works. Believe me when I say it’s verbose; imagine if, to do your shopping, you had to go to the shop and buy each item in turn, go home, put the item away and then go back to the shop to get the next item – that’s what developing a Vulkan application often feels like. The upside is that the programmer has much more time to consider what the best items to buy are.

I won’t go into much detail about the inner workings of Vulkan, but as a broad explanation it’d suffice to say it’s like OpenGL without hand-holding. Not only do you have to create shaders and tell the GPU which vertices to render, which you’d of course have to do in OpenGL, but you have to deal with all the memory management – creation and safe deletion of buffers and queues, all of the device checks to determine if your hardware is capable of what you need and all of the semaphores and locks related to the asynchronous nature of how Vulkan processes things.

On top of that, whereas OpenGL gives you a graphics pipeline with predefined operations, some of which are programmable – a vertex array feeds into a programmable vertex shader, followed by rasterization etc etc, Vulkan requires the user to create the pipeline from scratch. This removes a ton of overhead by removing unused stages of the pipeline, but requires much more elbow grease on the programmer’s part. I really like the customisation and can clearly see how a well-behaved Vulkan program would end up more efficient than a similar OpenGL 4.5 or DirectX 11 program.

After about a week of following this amazing tutorial on and off, and after 1000-or-so lines of code, I finally reached a crescendo of joy when this popped up on my screen:

vulkan_triangle

It’s the most beautiful and efficient triangle I’ve ever seen.

Now that I have something rendered to screen, it’s much less of a jump to get more stuff on the screen than the journey to obtaining this triangle was. I’m using GLFW which handles all of the windowing for me, but all that does currently is remove the hassle of integrating my program with each platform’s native windowing system. If you’re planning to use Vulkan in your own project, be prepared to put in a lot of effort, but be excited when your application runs like silky-smooth butter.

One last thing I noticed – whereas OpenGL tends to fluctuate around 60fps when using Vsync (on my monitor at least), Vulkan tends to stick at exactly 60fps when left alone. It must just be very comfortable sat where it is. On the flipside, dragging the window around or switching programs tends to lag like hell to the point even my music stutters, although the actual program still reports 60fps so it could just be X11. I’ll report back if I ever find the solution to that issue.

d1-vulkan-60fps

Dat gradient, yo.

This week I’m scheduled to continue work on the Vulkan stuff, but I’m also supposed to be working on Honeycode. I’ll likely talk about Honeycode a bit more in my next post as I’ve only brainstormed ideas for the syntax and engine integration so far.

PS. I originally planned to write about 1,000 words for this post to match the verbosity of Vulkan, but I decided that might be annoying to read. Have 625 instead.

I’m Making a Game Engine

It’s sure been a while since I last posted, well, anything. Part of that was me getting reacquainted with uni life, part of it was me adjusting to a real-person sleep cycle and part of it was me thinking about the game engine this post will be about. But most of it was just me being lazy because my last post was in early July, about three months ago. That’s my longest disappearance yet. Oops.

However, since I was last here, a lot has happened! As part of my third year at uni (I’m already halfway through, where does the time go?!), I have to do a big project about something to do with computer science; I’ve decided to make a game engine, which has resulted in some people thinking I’m a tad insane. I’m inclined to disagree – doing it will make me insane. Without further ado, introducing my concept: the Honeycomb Game Engine!

honeycomb_logo

At some point I will vectorise this image.

The basic idea is that Honeycomb will be geared towards people who don’t have all that much experience in game design or programming (or both!). The way I will achieve that is by turning the idea of a game engine on its head. Some game engines try to give the developer tons of tools for any imaginable situation, but I think this is overwhelming for a new user – that’s how I felt way back when I started using Unity, anyway. Instead of following in those footsteps, I’m going to try and condense my game engine down to easy-to-use key features and avoid adding anything that’s unnecessary. Essentially it will lie somewhere between Unity and Game Maker.

In my opinion, a beginner-friendly game engine should have most of the following features:

  • A clean interface with easy-to-understand buttons and menus for common tasks;
  • A way to add behaviour to game objects that is intuitive and doesn’t require writing tons of boilerplate code (a simple scripting language, for example);
  • A room-building tool that lets you add game objects to a room and snap them to a grid easily;
  • Support for common 3D modelling packages, such as Blender or Maya. I think supporting .fbx files is sufficient for this;
  • A big, red button in the corner of the editor that donates an energy drink to an exhausted game engine developer somewhere in the world;
  • One-button exports to the platforms the engine supports. Users shouldn’t have to sift through mile-long lists of options for their exports;
  • A UI designer toolkit that lets users place buttons, text elements and sliders on a virtual ‘screen’ that then gets overlaid onto the running game;
  • A ‘play’ button that lets users run their game directly in the editor, or at least build the game quickly and provide debugging feedback to the user. This is one of the most difficult things I will try to implement (it’s a stretch goal);
  • A material editor that lets users plug in values and textures for various parameters. Then users can drag those materials onto models in their game;
  • An animation toolkit that lets users control how models are animated and how different animations work together;
  • Coroutines. Holy hell, they are so useful in Unity while writing behaviour.
  • Many many more things that I’ve inevitably missed out!

Some of these features obviously require more work than others. For example, I plan to create a scripting language (called Honeycode, because I’m an awful person) that will get compiled to C++. The advantage of creating my own scripting language is that I can abstract some of the less beginner-friendly features of C++ and ignore some less useful ones entirely, while making assumptions about what Honeycomb provides. This way, I can bake engine integration directly into the language, similar to how the Unity API augments C# to provide Unity’s features.

Essentially, my motivation for the engine is to create something that new users can just pick up and start making things with, without having to spend hours with setup and tutorials. A user should be able to drag in a default character controller and immediately have working character input and movement, the whole shebang. They should then be able to easily add behaviour to objects in the scene in a way that feels natural – telling a sheep to jump 17 feet in the air when the player approaches should be a simple line or two of code. Obviously sheep don’t jump that high though, it’d be terrifying if they did. Or baaaaad.

So that’s my approach. I’m going to add in the absolute basic features that a new user will want or need and let them build everything else on top of that framework. To aid that, I’ll also try and write a bunch of tutorials and sample code to guide users into writing the more complex and weird stuff that I don’t think needs to be baked into the engine itself. That way, it’s not as if I completely neglect the existence of the more useful features, but I don’t just provide them for the sake of making my engine do your tax returns and make toast for you while you’re working.

One of the more exciting things about my project is that I’m going to try and use Vulkan, the shiny new graphics API by the Khronos Group. It’s sorta like OpenGL++, but not really. Khronos basically took the remnants of AMD’s Mantle API and created a cross-platform graphics API for the modern age, which allowed them to make different design decisions to the ones made during OpenGL’s development. As a result, the API provides much lower-level access to hardware, but this makes everything so much more verbose; it’ll be a challenge to implement Vulkan support, but I’m confident I can get it working with a little elbow grease. By that, I mean a lot of coding all-nighters. And hey, if it doesn’t work, I can always fall back to OpenGL.

I’ll be returning to this blog every now and then to document my progress, and when the time comes, upload working downloads for people to try out the engine. That’s a very far way off currently though! I hope this whirlwind tour of my plans make sense, although I’ve probably missed some stuff out, so let me know if something doesn’t make sense. It’d actually be hugely useful for me to know what people’s most requested features or major gripes about their choice of game engine or development tool are, so feel free to bellyache and rant in the comments section about something your game engine does that you think could be improved!

ShaderLab Programming #1 – Sepia Blend Shader

Now that exams are over, I’ve had time to actually breathe and, more importantly, do game dev stuff. I’ve rarely touched computer graphics in the past, but it’s an area I’ve always wanted to explore in detail. This summer, I plan to mostly spend my time learning the intricacies of computer graphics, and that’s partially where Unity’s ShaderLab steps in.

ShaderLab is a graphics language in its own right, but it also encompasses Cg, a high-level shader language by Nvidia, and HLSL, a Microsoft shader language for use with DirectX, both of which were developed together. We don’t need to know too much about the structure of ShaderLab programs for what we’re doing, so I’m largely going to ignore it for now. I needed to create a post-processing effect similar to Unity’s built-in Sepia Tone, which is an on/off effect, with a tweak that allows it to fade in and out instead. It’s for a game I’m working on in which you can turn back time – more on that in the coming days when I’ve put together something a bit more concrete hopefully! Let’s deconstruct this super-simple program and explore what a sepia effect actually is. Unfortunately, Unity’s Sepia Tone shader seems to use some sort of maths wizardry for its fragment shader that I don’t understand, so I’ll also be writing mine mostly from scratch. Here’s the number bullshit right here:

fixed4 frag (v2f_img i) : SV_Target
{ 
    fixed4 original = tex2D(_MainTex, i.uv);
 
    // get intensity value (Y part of YIQ color space)
    fixed Y = dot (fixed3(0.299, 0.587, 0.114), original.rgb);

    // Convert to Sepia Tone by adding constant
    fixed4 sepiaConvert = float4 (0.191, -0.054, -0.221, 0.0);
    fixed4 output = sepiaConvert + Y;
    output.a = original.a;
 
    return output;
}

The infinite wisdom of the Internet tells us that to convert a source image to a sepia-tone version, we just define a function of the input colours as follows:

new red = min(in red * 0.393 + in green * 0.769 + in blue * 0.189, 255)
new green = min(in red * 0.349 + in green * 0.686 + in blue * 0.168, 255)
new blue = min(in red * 0.272 + in green * 0.534 + in blue * 0.131, 255)

This formula represents 100% sepia; that is, the source image completely turned into a sepia tone. But we don’t always want a completely sepia image – we need to incorporate some sort of progress measure. Using this formula, we can just interpolate between the input colour and the full sepia tone and use a separate script to control the ‘progress’ of the interpolation. I’ve talked about interpolation before, so if this really big word is confusing, it just means we’re picking a colour on an imaginary line between ‘original colour’ and ‘sepia colour’, with a parameter between 0 and 1. We can now create another function to get our final ‘blended’ sepia colour:

out red = parameter * new red + (1 - parameter) * in red
out green = parameter * new green + (1 - parameter) * in green
out blue = parameter * new blue + (1 - parameter) * blue

With the theory out of the way, we can now create the shader and the script that will control it. We’ll be utilising the post-processing effects provided by Unity, so make sure you import them from the Standard Assets using Assets->Import Package->Effects from the menu bar. We’ll start with the controller script.

There are two main ways to keep track of the progress, so I’ll cover both. The first way is to define a method such that another script can just pass in a float to act as the parameter.

using UnityEngine;

namespace UnityStandardAssets.ImageEffects
{
    [ExecuteInEditMode]
    [AddComponentMenu("Image Effects/Color Adjustments/Sepia Blend")]
    public class SepiaBlend : ImageEffectBase
    {
        private float progress = 0f;
        private bool active = false;

        private void SetProgress(float progress)
        {
            this.progress = progress;
            active = (progress == 0f);
        }

        // Called by camera to apply image effect.
        void OnRenderImage(RenderTexture source, RenderTexture destination)
        {
            if(active)
            {
                material.SetFloat("_Progress", progress);
                Graphics.Blit(source, destination, material);
            }
        }
    }
}

OnRenderImage() is the method called when we want to render a post-processing image. We set the ‘progress’ parameter of the material attached to this project – we’ll see how this works with that material’s shader shortly – and use Graphics.Blit() to apply the texture created by the shader to the screen. The second way to control the progress parameter is to allow external scripts to set the ‘active’ boolean and use a time-based interpolation to decide what the progress should be. The guts of the program will look more like this:

private float progress = 0f;
private bool active = false;

private void SetActive(bool active)
{
    this.active = active;
}

private void Update()
{
    progress = Mathf.Lerp(progress, active ? 1f : 0f, Time.deltaTime
        * 5f);
}

// Called by camera to apply image effect.
void OnRenderImage(RenderTexture source, RenderTexture destination)
{
    material.SetFloat("_Progress", progress);
    Graphics.Blit(source, destination, material);
}

Now for the actual shader! I’ll explain very quickly what the fragment shader is doing and ignore the vertex shader since it’s doing nothing in this example; I may do another post in the future explaining the details of how the shader is constructed, but I’m glossing over a lot for now. Don’t even worry about it yet.

Shader "Hidden/SepiaBlendEffect"
{
    Properties
    {
        _MainTex ("Base (RGB)", 2D) = "white" {}
        _Progress ("Progress", Float) = 0
    }
    SubShader
    {
        Pass
        {
            ZTest Always Cull Off ZWrite Off

            CGPROGRAM
            #pragma vertex vert_img
            #pragma fragment frag
 
            #include "UnityCG.cginc"

            uniform sampler2D _MainTex;
            uniform float _Progress;

            fixed4 frag(v2f_img i) : SV_Target
            {
                fixed4 original = tex2D(_MainTex, i.uv);
 
                half3x3 vals = half3x3
                (
                    0.393, 0.349, 0.272, // Values for input red.
                    0.769, 0.686, 0.534, // Values for input green.
                    0.189, 0.168, 0.131  // Values for input blue.
                );

                half3 input = half3(original.rgb);

                half progress = half(_Progress);

                half3 intermed = (progress * mul(input, vals)) + 
                    ((1 - progress) * input);

                fixed4 output = half4(intermed, original.a);

                return output;
            }
            ENDCG
        }
    }
    Fallback Off
}

We’re interested in the stuff between ‘CGPROGRAM’ and ‘ENDCG’ – this is written in Nvidia’s Cg. All we need to know about the structure of shaders for now is that the fragment shader is run on every pixel of a processed image. I’ll also ignore all the types of variables for now and cover those in another post at a later date. Jumping straight to the frag() method, which constitutes the fragment shader, we’ll see a 3×3 table of numbers, vals, that looks strikingly like the one defined for our first function; the table is the transpose of a matrix formed by those functions’s numbers. Our shader performs a matrix multiplication on a vector made of the original rgb values, input, and our magical sepia number matrix vals (which is why it had to be transposed), then we do our interpolation to get intermed. Afterwards, we put together the final output by adding the original colour’s alpha onto intermed, and boom! We have our Sepia Blend shader. Now all that remains is to attach the SepiaBlend script to the main camera and assign the SepiaBlendEffect shader to the script, then we’re good to go.

I hope this has been a helpful introduction to the world of computer graphics. I’ve uploaded the three scripts to avoid you having to copy everything out (both variants of SepiaBlend.cs are included; pick your preferred version). Let me know if everything turns into a bugfest when you attempt to run any of the examples and I’ll try to diagnose the problem.

Oh Hell It’s Exam Season Again

This is only going to be a quick post about how often I will post (or not post) in the coming weeks. Exams are looming over the horizon, looking menacingly at me like the moon from Majora’s Mask, so I’m likely not going to have enough time to make games or post on here about, well, anything. Revision has settled in firmly, so I should probably keep my sanity and not split my time between revising and making games (even though one of those is far more fun than the other).

Since the last update for Shifting Dungeons, the only game design I’ve actually done is making bars look nicer. Well, it’s a work-in-progress, so it’ll look better by the next update. The main thing I need to add is some icons so you know which bar is for which stat. Hopefully next time I make a post, which will likely be after June 17th at the very least, I’ll have much more to show.

nice_bars_m8

 

Shifting Dungeons ~ Post-LD35 Update 1

One thing I’ve become exceedingly bad at is updating games once I’ve thrown them onto the Internet for the first time. The last time I did such a thing was probably over a year ago. But, starting today, I am a changed man! For I have vowed to complete Shifting Dungeons to a standard that I’m happy to put my name to and watch it run off into the wider world, playable and somewhat consistent. Ahh, games, they grow up so fast. I’ve been very preoccupied lately with ruining my sleep schedule by doing coursework right up until deadlines (and beyond…), but that didn’t stop me tweaking Shifting Dungeons a bit.

Without further ado, it’s time to list what’s changed! That’s what change-lists are for, after all.

giphy

Character Customisation

There’s a handful of new character customisation options, bringing the total of skin and clothing colours available to 8 each. That may increase in the future, but for now I’ve stuck with 16 total options because the UI feels clean and not overwhelming with choice, while providing a relatively broad number of outfit combinations.
The whole character customisation scene has a background too – I’ve decided to make it look like the player is getting changed in their bedroom. It’s woefully incomplete currently, but it’s a start.

promo-dev-06

Options Menu

The bare basics of an options menu are also now in the game. Most importantly, this menu has an exit button – something I’m very good at forgetting to add. Now you don’t have to Alt+F4 out of the game or use Task Manager! There are sliders for adjusting music and SFX volume and for changing text speed, but they don’t do anything right now (especially since there’s no music and next to no text). However, the sliders’ values are accurately stored, so it’s a start! I’ll probably have them fully implemented by next update.

promo-dev-04

Intro Cutscene

I’ve also started work on a cutscene for the start of the game. It’ll be rather short and serve only to introduce the concepts and backstory of the game in a better way than the Ludum Dare entry version handled it – a wall of text. Instead, short sentences accompanied by pretty pixel art will probably work better. Similar cutscenes will appear during major story arcs, but since there’s no story right now, this is the only cutscene implemented.

promo-dev-05

Controller Support

Any controller that supports X-Input should work with the game. I say should; I’ve been testing the game using a Wii U pro controller and an adapter that allows it to mimic an Xbox 360 controller (which uses X-Input), so hopefully it also works with other X-Input devices, although I can’t promise anything will work perfectly. The controls are fairly simple and you shouldn’t have any trouble getting to grips with them. However, there are no in-game instructions for controllers, so here is an image detailing how the controls work (which I probably could have just included in the game anyway):

promo-dev-02

Enemy Lock-on

To make it easier to take down baddies, you can now lock onto them. On a controller, aim in the general direction of the enemy and press the left button; using a mouse, press the right mouse button. It’s the same button to de-lock (lock off?), but make sure you’re not aiming at an enemy when you do it or it’ll just lock onto the new enemy. Unless that’s what you wanted to do, then great, that’s how you do that. When locked onto an enemy, their health will appear next to them and decrease in realtime, plus your bullets will fire straight at them, so you can see why it’s a handy feature. Plus, when you kill a locked-on enemy, it’ll automatically lock onto any nearby enemies. To aid your aiming, there’s a second cursor – the orange one is for locking on while the white one is the mouse’s actual position. I’ve yet to implement the white cursor for controller input, but it’ll be in the next update for sure. Oh, and the cursor sprite and animation is a lot fancier, too.

promo-dev-03

Mechanical Changes

The biggest gameplay change is possibly the addition of the Energy bar. There is a distinction between powerup energy and general energy, hence there two energy bars; the leftmost one, with the thunderbolt icon, will decrease when you fire bullets or slow down time and replenish when you move. The one on the right, with the arrow icon, starts off full when you pick up a powerup (try saying that five times fast), then slowly falls as you move until it reaches zero and the powerup expires. Health replenishes as you move as before, but at a slower rate, plus the UI is more reactive; being hit makes the health bar shake, and having low energy makes the energy bar shake more, the lower energy you have. Staying stationary also no longer stops time completely, but it slows it down a lot.

Shooting mechanics have had a bit of a mix-up too. Your bullets and enemy bullets don’t collide any more, as it provided an easy way to get rid of enemy attacks and there was no incentive to use the time-slowing mechanic to dodge bullets. However, you can now hold down the shoot button to start a hailstorm of bullets and wipe enemies off the map without me being liable for loads of repetitive strain injury lawsuits! To balance the increased shooting speed and the ability to lock on to enemies, your bullets do half as much damage, although in the next update I hope to add some system such as different bullet types that’ll let the player (and enemies) do more damage.

A few other changes are there, namely that rooms are much larger and the camera is zoomed out so the player can see further. It makes it slightly less confusing when you can hear you’re being shot at, since you can more easily see where it’s coming from by virtue of the threat actually being on-screen or only just off-screen, not a million miles away.

giphy1

Yay low-quality GIFs! My computer is just bad at everything…

Bug Fixes

You know that game-breaking bug I wrote about in the last blog post? The one that means you couldn’t get past the first dungeon because you’re unable to move on its final floor? That’s been squished. There were also a couple oversights where the game would sometimes skip to the final floor when there was supposed to be another standard floor before it, but now the floors act like they should.

Bugs Implemented

There’s only one that I’ve actually found and can remember, and it’s not hugely important: on the character select screen, the player’s face appears blank. That’s because technically he’s looking upwards, and due the the fact the player’s at an angle in 3D space, the game doesn’t recognise the mouse position correctly and doesn’t face it. If you press the right stick on a controller, the player will face the correct way, but unfortunately the right stick’s rest position has the player looking upwards anyway… Swings and roundabouts, huh?

promo-dev-07

Meet the very introverted and shy hero of the game.

Next Update’s Priorities

Most of all, I hope to implement more enemy types. Right now, there’s only one type, and they share the same sprites as one of the character customisation options. They all share the same terrible AI too, so I’m going to at least attempt to work on pathfinding and give some enemies different attacking styles. I’ll also try to make more dungeon types and give more variety to the dungeons themselves – different sizes, shapes and maybe obstacles inside the rooms. Plus, I’ll try to finish the powerups that were originally planned for the Ludum Dare version and implement new ones – the ‘shapeshifting’ aspect of the game is a little bare currently. Finally, I still need to balance the floors’ difficulties and spawning rates of enemies and powerups, since it’s still very imbalanced.

ld35_u1_download_banner